The Structure of Treponema pallidum Tp0624 Reveals a Modular Assembly of Divergently Functionalized and Previously Uncharacterized Domains

نویسندگان

  • Michelle L Parker
  • Simon Houston
  • Charmaine Wetherell
  • Caroline E Cameron
  • Martin J Boulanger
چکیده

Treponema pallidum subspecies pallidum is the causative agent of syphilis, a chronic, multistage, systemic infection that remains a major global health concern. The molecular mechanisms underlying T. pallidum pathogenesis are incompletely understood, partially due to the phylogenetic divergence of T. pallidum. One aspect of T. pallidum that differentiates it from conventional Gram-negative bacteria, and is believed to play an important role in pathogenesis, is its unusual cell envelope ultrastructure; in particular, the T. pallidum peptidoglycan layer is chemically distinct, thinner and more distal to the outer membrane. Established functional roles for peptidoglycan include contributing to the structural integrity of the cell envelope and stabilization of the flagellar motor complex, which are typically mediated by the OmpA domain-containing family of proteins. To gain insight into the molecular mechanisms that govern peptidoglycan binding and cell envelope biogenesis in T. pallidum we report here the structural characterization of the putative OmpA-like domain-containing protein, Tp0624. Analysis of the 1.70 Å resolution Tp0624 crystal structure reveals a multi-modular architecture comprised of three distinct domains including a C-terminal divergent OmpA-like domain, which we show is unable to bind the conventional peptidoglycan component diaminopimelic acid, and a previously uncharacterized tandem domain unit. Intriguingly, bioinformatic analysis indicates that the three domains together are found in all orthologs from pathogenic treponemes, but are not observed together in genera outside Treponema. These findings provide the first structural insight into a multi-modular treponemal protein containing an OmpA-like domain and its potential role in peptidoglycan coordination and stabilization of the T. pallidum cell envelope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal structure of the 47-kDa lipoprotein of Treponema pallidum reveals a novel penicillin-binding protein.

Syphilis is a complex sexually transmitted disease caused by the spirochetal bacterium Treponema pallidum. T. pallidum has remained exquisitely sensitive to penicillin, but the mode of action and lethal targets for beta-lactams are still unknown. We previously identified the T. pallidum 47-kDa lipoprotein (Tp47) as a penicillin-binding protein (PBP). Tp47 contains three hypothetical consensus m...

متن کامل

EFFICIENT SIMULATION FOR OPTIMIZATION OF TOPOLOGY, SHAPE AND SIZE OF MODULAR TRUSS STRUCTURES

The prevalent strategy in the topology optimization phase is to select a subset of members existing in an excessively connected truss, called Ground Structure, such that the overall weight or cost is minimized. Although finding a good topology significantly reduces the overall cost, excessive growth of the size of topology space combined with existence of varied types of design variables challe...

متن کامل

Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry

BACKGROUND The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome, therefore mass spectrometry studies are needed to bring insights into pathogenicity and protein expression profiles during infection. METHODOLOGY/PRINCIPAL FINDINGS To better understand the T. pallidum p...

متن کامل

Whole genome sequence of the Treponema pallidum subsp. pallidum strain Amoy: An Asian isolate highly similar to SS14

Treponema pallidum ssp. pallidum (T. pallidum), the causative agent of the sexually transmitted disease syphilis, is an uncultivatable human pathogen. The geographical differences in T. pallidum genomes leading to differences in pathogenicity are not yet understood. Presently, twelve T. pallidum genomes are available to the public, all of which are American in origin and often co-infect patient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016